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(57) ABSTRACT

Techniques are disclosed for image matting. In particular,
embodiments decompose the matting problem of estimating
foreground opacity into the targeted subproblems of esti-
mating a background using a first trained neural network,
estimating a foreground using a second neural network and
the estimated background as one of the inputs into the
second neural network, and estimating an alpha matte using
a third neural network and the estimated background and
foreground as two of the inputs into the third neural network.
Such a decomposition is in contrast to traditional sampling-
based matting approaches that estimated foreground and
background color pairs together directly for each pixel. By
decomposing the matting problem into subproblems that are
easier for a neural network to learn compared to traditional
data-driven techniques for image matting, embodiments
disclosed herein can produce better opacity estimates than
such data-driven techniques as well as sampling-based and
affinity-based matting approaches.
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LEARNING-BASED SAMPLING FOR IMAGE
MATTING

COLOR DRAWINGS

[0001] The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent
application publication with color drawing(s) will be pro-
vided by the Office upon request and payment of the
necessary fee.

BACKGROUND
Field
[0002] This disclosure provides techniques for image mat-
ting.
Description of the Related Art
[0003] Image matting seeks to estimate the opacities of

user-defined foreground objects in an (natural or synthetic)
image, i.e., to estimate the soft transitions between fore-
ground that is user-defined and a background, with the soft
transitions defining the opacity of the foreground at each
pixel. An alpha matte indicating the opacity of the fore-
ground at each pixel (with, e.g., white indicating complete
opacity, black indicating complete transparency, and shades
of gray indicating partial transparency) may be obtained via
image matting, and such an alpha matte is useful in many
image and video editing workflows. For example, matting is
a fundamental operation for various tasks during the post-
production stage of feature films, such as compositing
live-action and rendered elements together, and performing
local color corrections.

[0004] One traditional approach to image matting is
through sampling, in which color samples are gathered from
known-opacity regions to predict foreground and back-
ground layer colors to use for alpha estimation. Such sam-
pling-based matting typically involves selecting a color pair
by using the color line assumption and other metrics from
the spatial proximity of samples among others. However, an
inherent shortcoming of the sampling-based matting
approach is the lack of consideration for image structure and
texture during the sample selection process. Further, current
sampling-based matting approaches are limited to selecting
only a single sample pair to represent a pixel’s foreground
and background colors.

[0005] Another traditional approach to image matting is
affinity-based matting. Affinity-based matting techniques
make use of pixel similarity metrics that rely on color
similarity or spatial proximity to propagate alpha values
from regions with known opacity. In particular, local affinity
definitions, such as the matting affinity, may operate on a
local patch around a pixel to determine the amount of
information flow and propagate alpha values accordingly.
However, affinity-based approaches can suffer from high
computational complexity and memory issues.

[0006] As traditional approaches for image matting, such
as sampling-based matting and affinity-based matting, tend
to produce low quality results, current matting practices still
require intensive manual labor.

SUMMARY

[0007] One embodiment disclosed herein provides a com-
puter-implemented method for image matting. The method
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generally includes processing a received image and associ-
ated trimap using, at least in part, a first machine learning
model which outputs a predicted background. The method
further includes processing the received image, the associ-
ated trimap, and the predicted background using, at least in
part, a second machine learning model which outputs a
predicted foreground. In addition, the method includes pro-
cessing the received image, the associated trimap, the pre-
dicted background, and the predicted foreground using, at
least in part, a third machine learning model which outputs
an alpha matte.

[0008] Another embodiment disclosed herein provides a
method for training machine learning models for image
matting. The method generally includes training a first
machine learning model using at least a portion of training
data which includes images and corresponding trimaps. The
method further includes training a second machine learning
model using at least a portion of the training data and
backgrounds predicted by the first machine learning model
subsequent to the training of the first machine learning
model. In addition, the method includes training a third
machine learning model using at least a portion of the
training data, backgrounds predicted by the first machine
learning model, and foregrounds predicted by the second
machine learning model subsequent to the training of the
second machine learning model. The training of the third
machine learning model attempts to minimize a loss func-
tion which includes a loss defined over alpha gradients.

[0009] Other embodiments include, without limitation,
computer-readable media that include instructions that
enable processing unit(s) to implement one or more embodi-
ments of the above methods, as well as systems configured
to implement one or more aspects of the above methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the manner in which the above recited
aspects are attained and can be understood in detail, a more
particular description of embodiments of the invention,
briefly summarized above, may be had by reference to the
appended drawings.

[0011] It is to be noted, however, that the appended
drawings illustrate only typical embodiments of this inven-
tion and are therefore not to be considered limiting of its
scope, for the invention may admit to other equally effective
embodiments.

[0012] FIG. 1 illustrates an example networked environ-
ment in which machine learning models are trained and
deployed for image matting, according to an embodiment.

[0013] FIG. 2 illustrates a pipeline for determining alpha
mattes from input images and trimaps, according to an
embodiment.

[0014] FIG. 3 illustrates examples of an input image and
trimap, foreground and background predictions, and an
alpha matte prediction, according to an embodiment.
[0015] FIG. 4 illustrates a method of training machine
learning models for image matting, according to an embodi-
ment.

[0016] FIG. 5 illustrates a method for image matting,
according to an embodiment.

[0017] FIG. 6 illustrates a computing system in which an
embodiment may be implemented.
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DETAILED DESCRIPTION

[0018] Embodiments presented herein provide techniques
for image matting. In particular, embodiments decompose
the matting problem of estimating the opacity of a fore-
ground into the targeted subproblems of estimating a back-
ground using a first trained neural network, estimating a
foreground using a second neural network and the estimated
background as one of the inputs into the second neural
network, and estimating an alpha matte using a third neural
network and the estimated background and foreground as
two of the inputs into the third neural network. That is, rather
than estimating foreground and background color pairs
together directly for each pixel as in sampling-based matting
approaches, embodiments first estimate the background
image using its consistent structure, and then estimate fore-
ground colors using the background estimates. Thereafter,
the background and foreground color estimates are used,
together with an input image and trimap, to estimate an
alpha matte. Experience has shown that, by decomposing the
matting problem into subproblems that are easier for a
neural network to learn compared to traditional data-driven
techniques for image matting, embodiments disclosed herein
can produce better opacity estimates than traditional data-
driven techniques as well as sampling-based and affinity-
based matting approaches.

[0019] Inthe following, reference is made to embodiments
of the invention. However, it should be noted that the
invention is not limited to specific described embodiments.
Instead, any combination of the following features and
elements, whether related to different embodiments or not, is
contemplated to implement and practice the invention. Fur-
thermore, although embodiments of the invention may
achieve advantages over other possible solutions and/or over
the prior art, whether or not a particular advantage is
achieved by a given embodiment is not limiting of the
invention. Thus, the following aspects, features, embodi-
ments and advantages are merely illustrative and are not
considered elements or limitations of the appended claims
except where explicitly recited in a claim(s). Likewise,
reference to “the invention” shall not be construed as a
generalization of any inventive subject matter disclosed
herein and shall not be considered to be an element or
limitation of the appended claims except where explicitly
recited in a claim(s).

[0020] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0021] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
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combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0022] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0023] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0024] Computer program code for carrying out opera-
tions for aspects of the present invention may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

[0025] Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0026] These computer program instructions may also be
stored in a computer readable medium that can direct a
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computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

[0027] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0028] Embodiments of the invention may be provided to
end users through a cloud computing infrastructure. Cloud
computing generally refers to the provision of scalable
computing resources as a service over a network. More
formally, cloud computing may be defined as a computing
capability that provides an abstraction between the comput-
ing resource and its underlying technical architecture (e.g.,
servers, storage, networks), enabling convenient, on-de-
mand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management effort or service pro-
vider interaction. Thus, cloud computing allows a user to
access virtual computing resources (e.g., storage, data,
applications, and even complete virtualized computing sys-
tems) in “the cloud,” without regard for the underlying
physical systems (or locations of those systems) used to
provide the computing resources.

[0029] Typically, cloud computing resources are provided
to a user on a pay-per-use basis, where users are charged
only for the computing resources actually used (e.g. an
amount of storage space consumed by a user or a number of
virtualized systems instantiated by the user). A user can
access any of the resources that reside in the cloud at any
time, and from anywhere across the Internet. In the context
of the present invention, a user may access applications
(e.g., a matting application) or related data available in the
cloud. For example, a matting application could execute on
a computing system in the cloud to perform image matting,
and store alpha mattes determined via such matting at a
storage location in the cloud. Doing so allows a user to
access this information from any computing system attached
to a network connected to the cloud (e.g., the Internet).
[0030] FIG. 1 illustrates an example networked environ-
ment 100 in which machine learning models are trained and
deployed for image matting, according to an embodiment.
As shown, the networked environment 100 includes a model
generator 110, a training data repository 120, an application
server 130, and a data repository 140 communicatively
connected via a network 150.

[0031] The model generator 110 is generally representa-
tive of a computing system, such as the system discussed
below with respect to FIG. 6. As shown, the model generator
110 includes a training data generating application (“training
data generator”) 112 and a model training application
(“model trainer”) 114 running therein. Although shown as
being distinct, in some embodiments the training data gen-
erator 112 and the model trainer 114 may be implemented as
a single application. The training data generator 112 is
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configured to generate training data that may be stored in the
training data repository 120 (or elsewhere) and that is used,
in part, by the model trainer 116 to train machine learning
models for image matting. In one embodiment, training data
may be generated via a data augmentation scheme that
creates composite images on the fly using randomizations,
as discussed in greater detail below.

[0032] The model trainer 116 is configured to train
machine learning models, which may include a background
sampling network, a foreground sampling network, and
matting network. As detailed below, the background sam-
pling network may take as inputs an image and associated
trimap and output a predicted background; in turn, the
foreground sampling network may take as input the image
and trimap, as well as the background predicted by the
background sampling network, and output a predicted fore-
ground; then, the matting network may take as inputs the
image and trimap, as well as the background predicted by
the background sampling network and the foreground pre-
dicted by the foreground sampling network, and output a
predicted alpha matte. Examples of network architectures
for the background sampling network, foreground sampling
network, and matting network, as well as training algorithms
and loss functions to be minimized during training, are
discussed in greater below.

[0033] The application server 130 is generally represen-
tative of another computing system, the components of
which may be similar to those of the model generator 110.
As shown, the application server 130 includes a matting
application 132 running therein. In one embodiment, the
matting application 132 is configured to sequentially utilize
the trained background sampling network, the trained fore-
ground sampling network, and the trained matting network
to determine an alpha matte given an input image and
associated trimap, which may be retrieved from the data
repository 140 (or elsewhere), as discussed in greater detail
below.

[0034] FIG. 2 illustrates a pipeline 200 for determining
alpha mattes from input images and trimaps, according to an
embodiment. As described, image matting involves estimat-
ing the soft transitions between a user-defined foreground
and a background of an image, with the soft transitions
defining the opacity of the foreground at each pixel. The goal
of matting is thus to extract from a given image a foreground
layer with correct opacity values and color, such that the
extracted foreground layer can be used in compositing
operations down the pipeline.

[0035] Formally, the color mixtures in soft transitions
between foreground and background may be represented
with the com positing equation for a given pixel:

Lo F+(1-0,)B;, 1

where o,€[0, 1] denotes the opacity of the foreground at
pixel i and I, F, and B represent color values of the original
image, the foreground, and the background, respectively.
The matting problem is underconstrained, as the observed
color of the pixel I, in the composite image is known, while
the foreground color F,, background color B,, and opacity a,
are to be determined. In addition to the input image I itself,
a user may provide as input a trimap which indicates, for
every pixel, whether the pixel is a foreground (i.e., opaque,
a=1) or background (a=0), or of unknown opacity where
alpha values need to be estimated. Embodiments aim to
estimate the unknown opacities by making use of the colors
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of pixels that have been classified by the user as foreground
and background in the known-opacity regions.

[0036] As shown, the pipeline 200 deconstructs the solu-
tion of equation (1) by first estimating the background and
foreground parameters in equation (1) using background and
foreground sampling networks 230 and 250, respectively,
and then estimating opacity using a matting network 270
that takes the estimated foreground and backgrounds as
additional input channels, along with an input image 210 and
trimap 220. This data-driven approach to color sampling
employs targeted neural networks, namely the sampling
networks 230 and 250, that estimate background and fore-
ground layer colors while making use of high-level image
structure and texture. Traditional sampling-based matting
does not make use of the high spatial correlation between
colors of neighboring pixels, whereas embodiments exploit
such spatial correlations by estimating per-pixel samples
while accounting for textures that exist in the foreground
and background regions through the use of neural networks.
Experience has shown that foreground and background
samples estimated by techniques disclosed herein are
higher-quality than those estimated using sampling-based
matting approaches. Further, by estimating the foreground
and background color parameters in equation (1) using
sampling networks according to embodiments disclosed
herein, the difficulty of estimating corresponding alpha
values using a trained neural network is reduced compared
to training a neural network to estimate alpha values given
only an input image and trimap.

[0037] The intuition behind first estimating the back-
ground image 240 using its consistent structure, and then
estimating the foreground 260 using the background esti-
mates, as opposed to estimating the foreground and back-
ground color pairs directly in a single shot for each pixel as
in sampling-based approaches, is as follows. As a conse-
quence of the definition of the matting problem, the fore-
ground and background have different characteristics. In
particular, the background image may be thought of as a
fully opaque layer that is partially obscured by foreground
object(s). In other words, a background image with consis-
tent structural and textural properties may be considered to
be behind the foreground. By contrast, the foreground layer
is spatially limited to the extent of non-opaque regions. This
means that colors that participate in mixtures with the
background may be expected to have similar color distribu-
tions to the fully opaque pixels, but the structural and
textural characteristics may differ greatly in partial-opacity
regions. Given this intuition, embodiments decompose the
matting problem as described above, instead of estimating
the foreground and background color pairs together directly
for each pixel as in traditional sampling-based approaches.

[0038] As shown, the background sampling network 230
takes as inputs the input image 210 and trimap 220 and
outputs a predicted background 240. Panel A of FIG. 3
illustrates an example input image 310 and associated trimap
320, and panel B shows an example predicted background
330 that the background sampling network 230 may output
given the input image 310 and trimap 320. As shown, the
input image 310 depicts a pineapple 315, and the trimap 320
is a user-generated segmentation of the image 310 that
includes a region 322, shown in white, that the user is
confident is foreground; a region 324, shown in black, that
the user is confident is background; and a region 326, shown
in gray, whose pixels are not known to be foreground or
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background and could be a combination of the two (in which
the foreground is partially transparent). The goal is then to
determine alpha values representing opacity of foreground
object(s) in grey areas such as the region 326.

[0039] In one embodiment, the background sampling net-
work 230 is a neural network with a two-stage architecture
in which both stages are fully convolutional encoder-de-
coder structures, although other network architectures, such
as architectures suitable for inpainting or sampling more
generally, may be used in alternative embodiments. For
example, a two-stage architecture from image inpainting,
which attempts to hallucinate a missing part of an image
using the consistent structures and high-level understanding
of the overall image, may be used. However, unlike the
image inpainting problem, the background image that the
background sampling network 230 estimates is partially
observed in the input image hidden behind the partially
opaque foreground with an unknown alpha matte. To keep
the two-stage architecture from hallucinating plausible
structures in the unknown region, the background sampling
network 230 may be trained to recognize the background
structures that are hidden behind the foreground and esti-
mate samples accordingly. In one embodiment, this is
achieved by providing the input image 210 as one of the
inputs to the background sampling network 230, rather than
only providing fully transparent regions defined by the
trimap 220. In such a case, the loss function used during
training of the background sampling network 230 may be
defined over only the unknown-opacity region, as:

1 N 2
Lp = mzieU|Bi - B @

where B and B denote the predicted and ground-truth
background colors, and U is the image region labeled as
unknown in the input trimap.

[0040] With the additional input of the input image 210
and the use of equation (2), the background sampling
network 230 learns not to hallucinate regions but to instead
use the partially obstructed background regions as a guide to
estimate high-frequency details. This difference is crucial for
sampling-based matting, as color values for the background
directly affect the matte quality through its use in the
compositing equation. It should also be noted that the loss
function of equation (2) only includes the unknown-opacity
region, as the background colors are irrelevant for the
fully-opaque foreground regions in alpha estimation.
[0041] In a particular embodiment, the background sam-
pling network 230 may be a neural network with a two-stage
architecture. Both stages are fully convolutional encoder-
decoder structures. The first stage may take an RGB (red,
green, blue) image and a binary mask indicating the inpaint-
ing regions as input pairs and output the initial coarse
inpainted RGB image. The whole RGB image may be taken
as input, rather than the image with white pixels filling in
holes, as is typically the case with normal image inpainting
tasks. Doing so shifts the network’s functionality of purely
hallucinating missing colors to instead distinguishing back-
ground colors from mixed input colors through further
training with whole RGB image input. In addition, for the
image matting task, the binary mask may come directly from
the trimap 320, and the unknown and foreground regions of
the trimap 320 are the inpainting region during background
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sampling. The second stage of the two-stage architecture
further takes the coarse prediction from the first stage along
with the binary mask as inputs and predicts final results. The
second stage may include two parallel encoders: a dilational
convolution branch specifically focused on hallucinating
contents with layer-by-layer dilated convolution, and a con-
textual attention branch that tries to attend on distant back-
ground features of interest. In terms of implementation, the
background sampling network 230 may use zero-padding
for each convolutional layer, with no batch normalization
layers, the exponential linear unit (ELU) may be used rather
than the rectifier linear unit (RelLU) as the activation func-
tion, output filter values may be clipped rather than activated
by tanh or sigmoid functions, and the Nearest Neighbor
method may be used in the upsample layer.
[0042] Once background samples are estimated, the fore-
ground sampling problem boils down to choosing plausible
colors from the known fully-opaque foreground regions that
best represent color mixtures observed in the input image
210. Background sampling is performed prior to foreground
sampling in embodiments, as the background may be more
uniform than the foreground which may have, e.g., varied
textures, making the likelihood higher of finding better
background samples. Returning to FIG. 2, the foreground
sampling network 250 receives the input image 210 and
trimap 220, as well as the predicted background 240, as
inputs. In turn, the foreground sampling network 250 pro-
cesses such inputs and outputs a predicted foreground 260.
Panel B of FIG. 3 illustrates an example foreground 340 that
the foreground sampling network 240 may output given the
input image 310, the trimap 320, and the predicted back-
ground 330.
[0043] In one embodiment, the foreground sampling net-
work 250 is, like the background sampling network 230, a
neural network with a two-stage architecture in which both
stages are fully convolutional encoder-decoder structures,
although other network architectures, such as architectures
suitable for inpainting or sampling more generally, may be
used in alternative embodiments. In such a case, the loss
function used to train the foreground sampling network 250
may be composed of two terms added together:
L-LL.,, o

[0044] The first term £ % 1n the loss function of equation
(3) is the L' loss analogous to background sampling;

1 . e
Lig= mzieu |Fi - R,

where [ and F denote the predicted and ground-truth fore-
ground colors. This term simply changes the binary mask to
assign background and unknown area of trimap 320 to be the
inpainting region and incurs loss on the differences between
ground-truth and predicted foreground colors in the
unknown region U. However, sampling foreground is more
challenging than sampling background colors, as foreground
inpainting regions are typically larger than those in back-
ground inpainting and are connected to the boundaries of
images, and, unlike background colors, foreground colors
are typically of high frequency. To alleviate these problems,
background colors and alpha mattes may be utilized during
training to help the foreground sampling network 250. To
use background colors, the foreground sampling network
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250 may take background colors predicted from the fully
trained background sampling network 230 as extra input
channels (e.g., 7 channels rather than 4) to gain more
information. In one embodiment, the extra weights in the
first convolutional layer of the foreground sampling network
250 may be initialized with Xavier random variables. To use
alpha mattes, an additional compositional loss may be added
to the foreground prediction loss £ ,to guide the network to
learn predicting foreground colors in the manner defined by
equation (1). The second term in the loss function of
equation (3) is such a compositional loss that penalizes
deviations of an intermediate composite image by using
equation (1) with predicted background and foreground
colors, and ground-truth alpha mattes from the reference
composite input image I:

1 N N
Leomp = mzieu |ai i + (1= e)B; — L.

Here, the ground-truth alpha matte, ground-truth back-
ground, and predicted foreground are used together to com-
pute a predicted composited RGB image o, +(1-c,)B,, and
the predicted RGB image is compared with the ground-truth
RGB image in £ | distance. It should be noted that, although
ground-truth alpha mattes are used during training of the
foreground sampling network 250 through the composi-
tional loss, the alpha matte is not needed when estimating
foreground samples in the final system in forward passes.
[0045] In a particular embodiment, a weighted version of
the compositional loss may be employed in which an ad hoc
weight is applied depending on the ground-truth a pixel-
wisely to the [, distance between predicted and ground-truth
composited images. In such a case, for each pixel i, the
weight may be computed as:

o1 . ©)
3o + 7 for o € [0, 0.5]
o= 13 :
-3¢ + T for o' €[0.5,1]
[0046] The weighted compositional loss may then be

computed as:

1 R M
Licomp = mzieriVi -1

where I:(xf:+(l —(x)]%. Adding a weight to the compositional
loss aims to increase the influence of the compositional loss
term where a is close to 0.5, indicating final image colors are
almost equally blended between foreground and background
colors and to decrease the influence of the compositional
loss term where o is close to 0 or 1, meaning the image color
is almost the same as the foreground or background color.
The final loss may then be the weighted sum of the fore-
ground prediction loss and the weighted compositional loss:

LLih Lo ®
[0047] Experience has shown that the background and

foreground sampling networks disclosed herein are able to
generate spatially smooth color predictions that match well
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with actual colors that form mixtures in images, in contrast
to traditional sampling-based matting approaches that gen-
erated noisy sampling results. Further, due to the common
use of the color line model to select samples, traditional
approaches can incorrectly choose foreground samples that
are very similar to the actual background color in transparent
regions, and vice versa, resulting in low-quality alpha pre-
dictions.

[0048] Returning to FIG. 2, after the predicted foreground
260 is determined using the foreground sampling network
250, then the matting network 270 is further used to process
the input image 210, the trimap 220, the predicted back-
ground 240, and the predicted foreground 260. In turn, the
matting network 270 outputs the predicted alpha matte 280
corresponding to the input image 210. Panel B of FIG. 3
illustrates an example alpha matte 350 that the matting
network 270 may output given the input image 310, the
trimap 320, the predicted background 330, and the predicted
foreground 340.

[0049] In one embodiment, the matting network 270 is a
generative adversarial network (GAN), although other net-
work architectures such as an encoder-decoder architecture
or the Deep Mating architecture may be used in alternative
embodiments. A GAN may be implemented as a system of
two artificial neural networks, a generative model that is
trained to map inputs to a desired data distribution and a
discriminative model that is trained to evaluate the prob-
ability that a sample came from training data rather than the
generative model. In a particular embodiment, an
AlphaGAN architecture, which includes a generative model
that is a convolutional encoder-decoder network trained both
with the help of ground-truth alphas as well as the adver-
sarial loss from a discriminative network, may be used. In
such a case, the input to the encoder may include 10
channels: three (red, green, and blue) from the RGB image
210, one from the trimap 220, three from the background
colors 240, and three from the foreground colors 260.
[0050] In one embodiment, the matting network 270 may
be trained using a loss function that includes the alpha
prediction loss £ ,,;,, and compositional loss £ _,,,, used to
train the Deep Matting network, which together are referred
to herein as £ ,,, as well as an additional loss £, , grad
that is defined over alpha gradients. The alpha prediction
loss £ _, . aipha may be approximated as L '

alpha

V (o, -a)*+E, where o, is the output of the prediction
layer at pixel i, and the compositional loss £, may be
approximated as £, "=V (c,'~¢.)’+E>, where ¢ is the
RGB channel, p is the image composited by a predicted
alpha, and g is the image composited by ground truth alphas.
However, experience has shown that the alpha prediction
loss L ,,,, and compositional loss £ _,,,, do not properly
promote sharpness in alpha mattes. This issue is addressed
using the £ ,,, grad loss that is defined over alpha gradients
defined as the L' distance between the spatial gradient of
predicted and ground-truth alpha mattes:

1 R )
Lyrea = mzieU|Gi -Gy,

where G and G denote the gradient magnitude of predicted
and ground-truth alpha mattes, respectively. It should be
noted that, rather than operating on color values as the alpha
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prediction loss £ ,,,,, and compositional loss £ _,,,, do, the
L .. loss ensures that alpha gradients are also considered
during the training process. The final matting loss that
includes the alpha prediction loss £, ,,,, the compositional
loss £ ,,,,, and the £, loss over alpha gradients may be
defined as:

Ldm+£grad' (10)

matting

Experience has shown that the loss of equation (10) pro-
motes sharp results that effectively capture high-frequency
alpha changes. Intuitively, ensuring that gradients are pre-
served in the alpha matte may help produce better results in
regions having smooth transitions of gradients.

[0051] FIG. 4 illustrates a method 400 of training machine
learning models for image matting, according to an embodi-
ment. As shown, the method 400 begins at step 410, where
the training data generator 112 generates training data. In
one embodiment, the training data generator 112 may gen-
erate training data for training the foreground and back-
ground sampling networks using similar preprocessing as
for training Deep Matting network. The training data gen-
erator 112 may further generate training data for training the
matting network from a set of unique foreground images and
corresponding alpha mattes, and using a data augmentation
scheme that creates new composite images on the fly by
many randomizations. In one embodiment, the randomiza-
tions may include extending the number of distinct ground-
truth mattes by compositing two random foreground images
on top of each other with a probability of 0.5. The corre-
sponding trimaps may then be defined, again on the fly, by
dilating the foreground by a random number of pixels
ranging from, e.g., 1 to 19. Doing so creates greater vari-
ability in terms of ground-truth mattes and trimaps, and
provides better generalizability as images with sharp opacity
boundaries and large transparent regions are randomly com-
bined to create hybrid scenes. The randomizations may
further include, after the foreground images are selected and
mixed, selecting a number (e.g., 8) of random background
images and creating composite images, which are then fed
to the matting network as a batch. Using the same fore-
ground with different backgrounds in a batch increase the
invariance of the matte estimation with respect to the
background image. Selecting the background images ran-
domly at each iteration instead of defining a pre-determined
set results in the network seeing new input images through-
out the training process, which also helps with generaliz-
ability of the final network. In addition, the randomizations
may include applying random scaling to the input images
before feeding them to the network. That is, images may be
randomly resized to, e.g., 480x480 or 640x640 before
cropping patches from those images. As a result, the network
sees not only zoomed-in versions of the input images, but
also the input images as a whole, allowing the network to
better generalize in terms of image scale.

[0052] During the training of the foreground sampling
network 230, the training data generator 112 may further
employ an additional processing step to enlarge the fore-
ground set, by, e.g., enhancing each foreground image
before composition by randomly changing its brightness,
contrast, and saturation within the range [0.5, 1.5] according
to a truncated Gaussian distribution with p=1 and 0=0.2.
The hue of the foreground image may also be randomly
shifted within the range [-0.2, 0.2] according to another
truncated Gaussian distribution with p=0 and 0=0.1.
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[0053] At step 420, the model trainer 114 trains a back-
ground sampling network using the training data generated
at step 410 (using the Deep Matting preprocessing for the
background sampling network). In one embodiment, the
background sampling network may have a two-stage archi-
tecture, as described above, and be trained using the loss
function of equation (2) that is only defined over unknown-
opacity region(s) (indicated by trimaps associated with
images in the training data). Any suitable training algorithm
may be used, depending on the type of background sampling
network chosen. In a particular embodiment, the training
may start from a pre-trained model, such as the inpainting
model discussed above, and use the Adam optimizer with
[,=0.9 and $,=0.999 for back propagation, with a constant
learning rate of, e.g., 107>

[0054] At step 430, the model trainer 114 trains a fore-
ground sampling network using the training data generated
at step 410 (using the Deep Matting preprocessing for the
foreground sampling network) and background predictions
made by the trained background sampling network. In one
embodiment, the foreground sampling network may have a
two-stage architecture, and be trained using the loss function
of equation (3) that includes a L loss of equation (4), which
is defined over unknown-opacity region(s), and the compo-
sitional loss of equation (5), which penalizes deviations of
an intermediate composite image, as described above. Simi-
lar to the training of the background sampling network at
step 420, any suitable training algorithm may be used to
train the foreground sampling network, depending on the
type of foreground sampling network chosen, and in a
particular embodiment the training may start from a pre-
trained model and use the Adam optimizer with a constant
learning rate.

[0055] At step 440, the model trainer 114 trains a matting
network using the training data generated at step 410 (for
training the matting network), as well as background and
foreground predictions made by the trained background and
foreground sampling networks, respectively. In particular,
the matting network is trained to output a single channel for
the alpha matte. In one embodiment, the matting network is
trained using the loss function of equation (10), which
includes an Alpha prediction loss £ ., a compositional
loss £, ,andthe £, loss of equation (9) that is defined
as the L' distance between the spatial gradient of predicted
and ground-truth alpha mattes, as discussed above. Once
again, any suitable training algorithm may be used to train
the matting network, depending on the type of matting
network chosen.

[0056] In some embodiments, the matting network may
further be trained to be specialized for specific types of
scenes. For example, additional training using data from a
specific film franchise could be used to improve the matte
quality generated for image frames of films of the same
franchise. Here, it is assumed that the overall appearance of
image frames from the same film franchise are similar to
each other, such that training within this relatively lower
dimensional space will be easier than training with com-
pletely random images. In particular, if the post-processing
of films from the same film franchise were performed in a
similar manner, such as using the same color grading, or if
the same characters or objects appear in the films, the
dimensionality of the problem may be reduced. For
example, if the networks were to be trained on a series of
films in which most shots are shot with similar lighting, are
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color graded the same way, involve the same characters, take
place in similar places, etc., then the networks may work
better on a future installment of the same film franchise that
involves the same characteristics. In one embodiment, the
model trainer 114 may start with already trained networks,
and train those networks further with new data such as data
from a specific film franchise.

[0057] FIG. 5 illustrates a method 500 for image matting,
according to an embodiment. As shown, the method 500
begins at step 510, where the matting application 132
receives an input image and an associated trimap. As
described, the trimap may indicate foreground region(s),
background region(s), and region(s) of unknown opacity in
the input image, with the goal of matting being to predict the
opacity of the foreground at each pixel in the unknown
opacity region(s).

[0058] At step 520, the matting application 132 processes
the input image and trimap using a trained background
sampling network to predict a background in the input
image. As described, the background sampling network
takes an RGB image and trimap as inputs and is trained to
fill in missing background colors, thereby predicting the
background of the input image.

[0059] At step 530, the matting application 132 processes
the input image, trimap, and predicted background using a
trained foreground sampling network to predict a foreground
in the input image. As described, the foreground sampling
network is trained to take an RGB image and trimap, along
with the background predicted at step 520, as inputs and to
predict foregrounds colors given such inputs.

[0060] At step 540, the matting application 132 processes
the input image, trimap, predicted background, and pre-
dicted foreground using a trained matting network to predict
an alpha matte. As described, the matting network uses all
available information, including the RGB image, the trimap,
as well as the background predicted at step 520 and the
foreground predicted at step 530, to predict an alpha matte.
That is, the foreground and background predictions made at
steps 520 and 530 are input into the matting network as
image channels, in addition to the RGB and trimap image
channels. In turn, the matting network outputs a single
channel for the alpha matte.

[0061] FIG. 6 illustrates a computing system 600 in which
an embodiment may be implemented. As shown, the com-
puting system 600 combines the model generator 110 and
the application server 130 discussed above for simplicity,
but it should be understood that the model generator 110 and
the application server 130 may also be implemented as
distinct computing systems. Illustratively, the system 600
includes, without limitation, a central processing unit (CPU)
605, a network interface 615 connecting the system to a
network 616, an interconnect 617, a memory 620, and
storage 630. The system 600 may also include an I/O device
interface 610 connecting /O devices 612 (e.g., keyboard,
display and mouse devices) to the system 600.

[0062] The CPU 605 retrieves and executes programming
instructions stored in the memory 620. Similarly, the CPU
605 stores and retrieves application data residing in the
memory 620. The interconnect 617 facilitates transmission,
such as of programming instructions and application data,
between the CPU 605, I/O device interface 610, storage 630,
network interface 615, and memory 620. CPU 605 is
included to be representative of a single CPU, multiple
CPUs, a single CPU having multiple processing cores, one



US 2020/0357142 Al

or more graphics processing units (GPUs), a combination of
the above, and other types of processor(s). And the memory
620 is generally included to be representative of a random
access memory. The storage 630 may be a disk drive storage
device. Although shown as a single unit, the storage 630 may
be a combination of fixed and/or removable storage devices,
such as magnetic disk drives, flash drives, removable
memory cards or optical storage, network attached storage
(NAS), or a storage area-network (SAN). Further, the sys-
tem 600 is included to be representative of a physical
computing system as well as virtual machine instance(s)
hosted on underlying physical computing system(s). Further
still, although shown as a single computing system, one of
ordinary skill in the art will recognize that the components
of'the system 600 shown in FIG. 6 may be distributed across
multiple computing systems connected by a data commu-
nications network.

[0063] As shown, the memory 620 includes an operating
system 621, the training data generator 112, the model
trainer 114, and the matting application 132. The operating
system 621 may be, e.g., Linux® or Microsoft Windows®.
As described, the training data generator 112 is configured
to generate training data; the model trainer 114 is configured
to sequentially train a background sampling network, a
foreground sampling network, and a matting network; and
the matting application 132 is configured to process an input
image and associated trimap using the trained background
and foreground sampling networks and the trained matting
network in order to determine an alpha matte. In one
embodiment, the training data generator 112 generates train-
ing data, after which the model trainer 114 trains a back-
ground sampling network using the generated training data;
trains a foreground sampling network using the generated
training data and background predictions made by the
trained background sampling network; and trains a matting
network using the generated training, as well as background
and foreground predictions made by the trained background
and foreground sampling networks, respectively, according
to the method 400 discussed above with respect to FIG. 4.
After the foreground and background sampling networks
and the matting network have been trained, the matting
application 132 may receive an input image and an associ-
ated trimap; process the input image and trimap using the
trained background sampling network to predict a back-
ground in the input image; process the input image, trimap,
and predicted background using the trained foreground
sampling network to predict a foreground in the input image;
and process the input image, trimap, predicted background,
and predicted foreground using the trained matting network
to predict an alpha matte, according to the method 500
discussed above with respect to FIG. 5.

[0064] Advantageously, techniques disclosed herein per-
mit image matting with learning-based sampling. Sampling
networks are disclosed for estimating background and fore-
ground layer colors while making use of high-level image
structure and texture, in contrast to the limited set of selected
samples used by ftraditional sampling-based matting
approaches. Experience has shown that by inputting fore-
ground and background samples estimated using such sam-
pling networks into a matting neural network, along with an
input image and trimap, techniques disclosed herein can
achieve improvements in opacity estimation over traditional
hand-crafted sampling approaches and affinity-based mat-
ting, as well as previous data-driven techniques that directly
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solve the compositing equation for alpha values. The mat-
ting network itself may also be trained using a loss that is
defined over alpha gradients, which helps promote proper
sharpness in alpha mattes (which may effectively capture
high-frequency alpha changes) produced by the matting
network, in contrast to the traditional alpha prediction loss
and compositional loss that have been used. Techniques
disclosed herein may fix various issues in traditional sam-
pling-based matting and affinity-based matting approaches
and data-driven techniques, such as the inability of tradi-
tional sampling approaches to produce satisfactory results in
many cases, the problems encountered with affinity-based
matting when the background or foreground colors in an
unknown region does not clearly appear in the known
regions of a trimap, and the smoothness issues and erroneous
low-alpha values in high-transparency images produced by
traditional data-driven techniques. Further, the accuracy of
alpha mattes and foreground colors produced by techniques
disclosed herein may enable practical compositing applica-
tions, such as foreground extraction and background
replacement. Additional advantages include the possibility
of implementing techniques disclosed herein without com-
promising matte quality, with embodiments potentially
being ported to various platforms (including platforms that
can benefit from improved processing hardware). Interactive
computation rates are also possible, as the processing
amounts to a forward pass step of neural networks. In
addition, techniques disclosed herein may be used to train
neural networks that are specialized for specific types of
scenes.

[0065] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order or out of order, depending upon the
functionality involved. It will also be noted that each block
of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.

[0066] While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for image matting,
the method comprising:

processing a received image and associated trimap using,
at least in part, a first machine learning model which
outputs a predicted background;
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processing the received image, the associated trimap, and
the predicted background using, at least in part, a
second machine learning model which outputs a pre-
dicted foreground; and

processing the received image, the associated trimap, the

predicted background, and the predicted foreground
using, at least in part, a third machine learning model
which outputs an alpha matte.

2. The method of claim 1, wherein:

the first machine learning model is trained using at least

a portion of training data which includes images and
corresponding trimaps;

the second machine learning model is trained using at

least a portion of the training data and backgrounds
predicted by the first machine learning model subse-
quent to the training of the first machine learning
model; and

the third machine learning model is trained using at least

a portion of the training data, backgrounds predicted by
the first machine learning model, and foregrounds
predicted by the second machine learning model sub-
sequent to the training of the second machine learning
model.

3. The method of claim 2, wherein the training of the third
machine learning model attempts to minimize a loss func-
tion which includes a loss defined over alpha gradients.

4. The method of claim 3, wherein the loss defined over
alpha gradients is defined as a L' distance between a spatial
gradient of predicted and ground-truth alpha mattes.

5. The method of claim 2, wherein the training of the first
machine learning model attempts to minimize a loss func-
tion which is defined over one or more unknown-opacity
regions indicated by the trimaps corresponding to the images
included in the training data.

6. The method of claim 2, wherein the training of the
second machine learning model attempts to minimize a loss
function which includes a L' loss defined over one or more
unknown-opacity regions and a compositional loss which
penalizes deviations of an intermediate composite image.

7. The method of claim 2, further comprising:

generating the training data which includes the images
and the corresponding trimaps,

wherein the generating of the images in the training data
includes at least one of compositing pairs of random
foreground images on top of each other with a pre-
defined probability, selecting random background
images and creating composite images using the
selected background images and the composited pairs
of random foreground images, applying random scal-
ing, or randomly changing at least one of foreground
image brightness, contrast, saturation, or hue.

8. The method of claim 1, wherein each of the first and
second machine learning models has a two-stage architec-
ture in which both stages are fully convolutional encoder-
decoder structures.

9. The method of claim 1, wherein the third machine
learning model has one of a generative adversarial network
(GAN), a Deep Matting, or an encoder-decoder architecture.

10. The method of claim 1, wherein the associated trimap
indicates at least one foreground region, at least one back-
ground region, and at least one region of unknown opacity
in the received image.
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11. A non-transitory computer-readable storage medium
storing a program, which, when executed by a processor
performs operations for image matting, the operations com-
prising:

processing a received image and associated trimap using,

at least in part, a first machine learning model which
outputs a predicted background;

processing the received image, the associated trimap, and

the predicted background using, at least in part, a
second machine learning model which outputs a pre-
dicted foreground; and

processing the received image, the associated trimap, the

predicted background, and the predicted foreground
using, at least in part, a third machine learning model
which outputs an alpha matte.

12. The computer-readable storage medium of claim 11,
wherein:

the first machine learning model is trained using at least

a portion of training data which includes images and
corresponding trimaps;

the second machine learning model is trained using at

least a portion of the training data and backgrounds
predicted by the first machine learning model subse-
quent to the training of the first machine learning
model; and

the third machine learning model is trained using at least

a portion of the training data, backgrounds predicted by
the first machine learning model, and foregrounds
predicted by the second machine learning model sub-
sequent to the training of the second machine learning
model.

13. The computer-readable storage medium of claim 12,
wherein the training of the third machine learning model
attempts to minimize a loss function which includes a loss
defined over alpha gradients.

14. The computer-readable storage medium of claim 11,
wherein each of the first and second machine learning
models has a two-stage architecture in which both stages are
fully convolutional encoder-decoder structures.

15. The computer-readable storage medium of claim 11,
wherein the third machine learning model has one of a
generative adversarial network (GAN), a Deep Matting, or
an encoder-decoder architecture.

16. A computer-implemented method of training machine
learning models for image matting, the method comprising:

training a first machine learning model using at least a

portion of training data which includes images and
corresponding trimaps;

training a second machine learning model using at least a

portion of the training data and backgrounds predicted
by the first machine learning model subsequent to the
training of the first machine learning model; and

training a third machine learning model using at least a
portion of the training data, backgrounds predicted by
the first machine learning model, and foregrounds
predicted by the second machine learning model sub-
sequent to the training of the second machine learning
model.

17. The method of claim 16, wherein:

the training of the third machine learning model attempts
to minimize a loss function which includes a loss
defined over alpha gradients; and
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the loss defined over alpha gradients is defined as a L'
distance between a spatial gradient of predicted and
ground-truth alpha mattes.

18. The method of claim 16, wherein the training of the
first machine learning model attempts to minimize a loss
function which is defined over one or more unknown-
opacity regions indicated by the trimaps corresponding to
the images included in the training data.

19. The method of claim 16, wherein the training of the
second machine learning model attempts to minimize a loss
function which includes a L' loss defined over one or more
unknown-opacity regions and a compositional loss which
penalizes deviations of an intermediate composite image.

20. The method of claim 16, further comprising:

generating the training data which includes the images
and the corresponding trimaps,

wherein the generating of the images in the training data
includes at least one of compositing pairs of random
foreground images on top of each other with a pre-
defined probability, selecting random background
images and creating composite images using the
selected background images and the composited pairs
of random foreground images, applying random scal-
ing, or randomly changing at least one of foreground
image brightness, contrast, saturation, or hue.

21. A method of generating a training data set for training
an image matting machine learning model, the method
comprising:

receiving a plurality of foreground images and alpha
mattes corresponding to the plurality of foreground
images;
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generating a plurality of com posited foreground images
by com positing randomly selected foreground images
in the plurality of foreground images on top of each
other with a predefined probability;

generating a respective trimap for each composited fore-
ground image of the plurality of composited foreground
images by dilating a foreground in the composited
foreground image by a random number of pixels;

receiving a plurality of background images; and

generating composited images using random selected
background images from the plurality of background
images and the com posited foreground images,

wherein the image matting machine learning model is
trained based, at least in part, on the composited images
and corresponding trimaps from the generated trimaps.

22. The method of claim 21, further comprising:

randomly changing at least one of foreground image
brightness, contrast, saturation, or hue of the plurality
of foreground images to enlarge the training data set.

23. The method of claim 21, further comprising:

applying random scaling to the generated composited
images,

wherein cropped patches from the randomly-scaled com-
posited images and the corresponding trimaps from the
generated trimaps are used as the training data set
during training of the image matting machine learning
model.



